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ow do return currents affect observations" Method Main result
. 1) Determine the electric field strength as a function of ' ' ' -
(1) They heat the flaring corona, they can reduce (1) o ermine e & e e ?eturn e ROy Threg regimes of the rett.Jrn. current.e.xplaln the d.ynamlcs of the bea.m/return current transport.
the fration of electrons reaching the chromosphere E ) " g tl; o iy We derive the_sc_e ranges for con_1l_1|nat|ons'of the injected flux den_3|ty+ temperature & density along a loop:
alances the nonthermat beam current Jrc=-Jpeam (1) For lower injected flux densities, Ohm’s law accurately describes the system,
(2) They flatten the hard X-ray spectra at lower energies if and Jre=Jaritt+ Jrunaway (2) For medium range flux densities, runaway electrons become significant: They reduce the heating, reduce the HXR flattening
the potential drop is high enough (2) Runaway growth rates are well-defined for weak and return suprathermal electrons to the acceleration region
(3) Upward-propagating suprathermal electrons can be electric field strengths compared to Dreicer field (3) For higher flux densities either the RC is dominated by runaways (purely runaway regime, most likely), this further reduces the
observed in radio emission (less than ~0.1 Ed). Use this to calculate the runaway coronal heating and the HXR flattening; or current-driven instabilities produce a higher effective resistivity therefore a higher
_ current heating rate in the corona, and stronger flattening at lower energies of the observable HXR spectrum (deka-keV range). Y
Nonthermal Beam/Return-Current (RC) Runaway electrons reduce heating in Suprathermal runaway electrons Beam flux densities where
Runaway Model corona by reducing the electric field return to the looptop runaways become significant
Fig 1: Cartoon of co-spatial return-current model. Electrons are accelerated ahove-the- Fig 4: Atmosphere in which the beam is injected. Four models are Fig 5: Current density using four models. In all models Fig 9: Total potential drop (top). runaway current fraction at the
looptop and propagate downward. Within a collision time [a,b] the return current electric field is used for comparison. Heating rate in the upper corona is the beam current and RC densities are balanced lfDOPtOP (middle), and maximum normallzeFi RC eleFtrlc
established and the beam current is balanced by the co-spatial return current. The induced lowest when runaways are accounted for (RA.RC.CC). The sharp along the loop. In the runaway model we further field (bottom). For the injection of beams with 8= 4 into
magnetic field by the beam is canceled by that of the return current. For higher electric field decrease in the heating rate is due to thermalization of lower show the runaway and drifting components of RC. the atmospheres listed in the top panel. o
magnitudes, more runaways are accelerated out of the RC plasma. energy electrons. Our solutions for Max E,./E;>>0.1 are only qualitatively
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[ Schematic nonthermal beam and RC distributions] [Initial pitch-angle distribution also affects heating & nonthermal electrons at looptop] For low enough flux densities, i.e. below the symbol “ [ ", Ohm’s law
: — e ————— governs the return-current dynamics.

Fig 3: j’::eelr:;tt': ddE;Tr?:tll?ocn:l(eit?iecaﬁn;lacln:nlzlcéci-jr:: rﬁz Esﬁir:ioer:zcat[ggs fhr: a Runaways accelerated out of the ambient plasma are not the only suprathermal For higher flux densities injected into the various atmospheres,
loop, the distribution flattens. In the chromosphere, Coulomb collisions § : g:j:tnrgr;:\tf;ergt;;?r:z (tarl]:c?ézef::gtl(:lr; orsee?ellc()ar:ii:;?;;;eSli?leC::I?yn; Z;:rrl](o?l:ZI;g; k-scattered runaways become S|gn|f|c?nt in reducing the_ heating r?t_e in the
dominate. Right: The higher the normalized electric field, the more . 10 Tharkova & Dobranskis 2016). | | corona and the HXR flattening at lower energies. In ad_d't'on' these
runaways are accelerated. As they propagate toward the looptop they = IRRSE njected beam F11in atmosghere vith 4 MK at apex suprathermal runaways return to the acceleration region, where
gain an energy equal to the potential drop. % e TR —_—_-_-_-_’_‘_‘_’ _____ I anEEEE We use the Fokker-Planck code of Allred et al. 2020. ~ 100; """"""""" : they can be further accelerated.
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